Abstract

Understanding the structure and dynamic process of interfacial water molecules at the catalyst‐electrolyte interface on acidic oxygen evolution reaction (OER) kinetics is highly desirable for the development of proton exchange membrane water electrolyzers. Herein, we construct a series of p‐block metallic elements (Ga, In, Sn) doped RuO2 catalysts with manipulated electronic structure and Ru‐O covalency to investigate the effect of electrochemical interfacial engineering on the improvement of acidic OER activity. Associated with operando attenuated total reflectance surface‐enhanced infrared absorption spectroscopy measurements and theoretical analysis, we uncover the free‐H2O enriched local environment and dynamic evolution from 4‐coordinated hydrogen‐bonded water and 2‐coordinated hydrogen‐bonded water to free‐H2O on the surface of Ga‐RuO2, are responsible for the optimized connectivity of hydrogen bonding network in the electrical double layer by promoting solvent reorganization. In addition, the structurally ordered interfacial water molecules facilitate high‐efficiency proton‐coupled electron transfer across the interface, leading to reduced energy barrier of the follow‐up dissociation process and enhanced acidic OER performance. This work highlights the key role of structure and dynamic process of interfacial water for acidic OER, and demonstrates the electrochemical interfacial engineering as an efficient strategy to design high‐performance electrocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.