Abstract

The flower-like nano sized nickel cobalt oxide was successfully synthesized by facial hydrothermal method. Supercapacitor [NiCo2O4)||Activated carbon] asymmetric supercapacitor device (ASC) has been fabricated. The prepared self-assembled flower-like nanostructured NiCo2O4 nanomaterials were subjected to various analytical tools such as Powder X-ray diffraction (PXRD), Scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR). Furthermore, the bond length and electron cloud density between the atoms were analyzed by maximum entropy method (MEM). The electrochemical studies were probed using Cyclic Voltammetry (CV), chronopotentiometry charge-discharge (CD) and electrochemical impedance spectroscopy (EIS) using electrochemical workstation (CHI6008e) instrument. The activated carbon was used as an anode electrode material for device fabrication. The maximum specific capacitance of NiCo2O4 NFs was achieved to be 1030 Fg−1 at 1 Ag−1 with good cyclic stability. The maximum specific capacitance of ASC device is 41 Fg−1 at 1 Ag−1. More interestingly, the maximum specific energy (10 W h kg−1) and specific power (2000 W kg−1) values are achieved for asymmetric supercapacitor energy storage device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.