Abstract

Highly concentrated aqueous electrolytes have attracted a significant amount of attention for their potential applications in lithium-ion batteries. Nevertheless, a comprehensive understanding of the Li+ solvation structure and its migration within electrolyte solutions remains elusive. This study employs linear vibrational spectroscopy, ultrafast infrared spectroscopy, and molecular dynamics (MD) simulations to elucidate the structural dynamics in LiNO3 solutions by using intrinsic and extrinsic vibrational probes. The N-O stretching vibrations of NO3- exhibit a distinct spectral splitting, attributed to its asymmetric interaction with the surrounding solvation structure. Analysis of the vibrational relaxation dynamics of intrinsic and extrinsic probes, in combination with MD simulations, reveals cage-like networks formed through electrostatic interactions between Li+ and NO3-. This microscopic heterogeneity is reflected in the intertwined arrangement of ions and water molecules. Furthermore, both vehicular transport and structural diffusion assisted by solvent rearrangement for Li+ were analyzed, which are closely linked with the bulk concentration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.