Abstract

Salvia miltiorrhiza and S. grandifolia are rich in diterpenoids and have therapeutic effects on cardiovascular diseases. In this study, the spatial distribution of diterpenoids in both species was analyzed by a combination of metabolomics and mass spectrometry imaging techniques. The results indicated that diterpenoids in S. miltiorrhiza were mainly abietane-type norditerpenoid quinones with a furan or dihydrofuran D-ring and were mainly distributed in the periderm of the roots, e.g. cryptotanshinone and tanshinone IIA. The compounds in S. grandifolia were mainly phenolic abietane-type tricyclic diterpenoids with six- or seven-membered C-rings, and were widely distributed in the periderm, phloem, and xylem of the roots, e.g. 11-hydroxy-sugiol, 11,20-dihydroxy-sugiol, and 11,20-dihydroxy-ferruginol. In addition, the leaves of S. grandifolia were rich in tanshinone biosynthesis precursors, such as 11-hydroxy-sugiol, while those of S. miltiorrhiza were rich in phenolic acids. Genes in the upstream pathway of tanshinone biosynthesis were highly expressed in the root of S. grandifolia, and genes in the downstream pathway were highly expressed in the root of S. miltiorrhiza. Here, we describe the specific tissue distributions and mechanisms of diterpenoids in two Salvia species, which will facilitate further investigations of the biosynthesis of diterpenoids in plant synthetic biology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.