Abstract

Photocatalysis represents a sustainable strategy for addressing energy shortages and global warming. The main challenges in the photocatalytic process include limited light absorption, rapid recombination of photo-induced carriers, and poor surface catalytic activity for reactant molecules. Defect engineering in photocatalysts has been proven to be an efficient approach for improving solar-to-chemical energy conversion. Sulfur vacancies can adjust the electron structure, act as electron reservoirs, and provide abundant adsorption and activate sites, leading to enhanced photocatalytic activity. In this work, we aim to elucidate the role of sulfur vacancies in photocatalytic reactions and provide valuable insights for engineering high-efficiency photocatalysts with abundant sulfur vacancies in the future. First, we delve into the fundamental understanding of photocatalysis. Subsequently, various strategies for fabricating sulfur vacancies in photocatalysts are summarized, along with the corresponding characterization techniques. More importantly, the enhanced photocatalytic mechanism, focusing on three key factors, including electron structure, charge transfer, and the surface catalytic reaction, is discussed in detail. Finally, the future opportunities and challenges in sulfur vacancy engineering for photocatalysis are identified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.