Abstract

Introducing Ni in Ru oxide is a promising approach to enhance the catalytic activity for the oxygen evolution reaction (OER). However, the role of Ni (which has a poor intrinsic activity) is not fully understood. Here, a RuNiOx electrode fabricated via a modified dip coating method exhibited excellent OER performance in acidic media, and neutral media for CO2 reduction reaction. We combined in-situ/operando X-ray absorption near-edge structure and on-line inductively coupled plasma mass spectrometry studies to unveil the role of the Ni introduced in the Ru oxide. We propose that the Ni not only transforms the electronic structure of the Ru oxide, but also produces a large number of oxygen vacancies by distorting the oxygen lattice structure at low overpotentials, increasing the participation of lattice oxygen for OER. This work demonstrates the real behavior of bimetallic oxide materials under applied potentials and provides new insights into the development of efficient electrocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.