Abstract

Elucidating the origin of large Stokes shift (LSS) in certain fluorescent proteins absorbing in blue/blue-green and emitting in red/far-red has been quite illusive. Using a combination of spectroscopic measurements, corroborated by theoretical calculations, the presence of four distinct forms of the chromophore of the red fluorescent protein mKeima is confirmed, two of which are found to be emissive: a feeble bluish-green fluorescence (∼520 nm), which is enhanced appreciably in a low pH or deuterated medium but significantly at cryogenic temperatures, and a strong emission in red (∼615 nm). Using femtosecond transient absorption spectroscopy, the trans-protonated form is found to isomerize within hundreds of femtoseconds to the cis-protonated form, which further yields the cis-deprotonated form within picoseconds followed by structural reorganization of the local environment of the chromophore. Thus, the mechanism of LSS is substantiated to proceed via stepwise excited-state isomerization followed by proton transfer involving three isomers, leaving the fourth one (trans-deprotonated) as a bystander. The exquisite pH sensitivity of the dual emission is further exploited in fluorescence microscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.