Abstract
AbstractThe recombination of charges is an important process in organic photonic devices, because the process influences the device characteristics such as the driving voltage, efficiency, and lifetime. Here, by using various homoleptic and heteroleptic Ir complexes as dopants, it is reported that the stationary dipole moment (μ0) of the dopant rather than the trap depth (ΔEt) is a major factor determining the recombination mechanism in dye‐doped organic light‐emitting diodes (OLEDs). Dopants with large μ0 (e.g., homoleptic Ir(III) dyes) induce large charge trapping on them, resulting in high driving voltage and trap‐assisted recombination‐dominated emission. On the other hand, dyes with small μ0 (e.g., heteroleptic Ir(III) dyes) show Langevin recombination‐dominated emission characteristics with much less charge trapping on them no matter what ΔEt is, leading to lower driving voltage and higher efficiencies. This finding will be useful in any organic photonic devices such as phosphorescent or thermally assisted delayed fluorescent dye sensitized fluorescent OLEDs where trapping and recombination mechanisms play key roles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.