Abstract

AbstractPressure‐sensitive‐adhesives (PSAs) are pervasive in electronic, automobile, packaging, and biomedical applications due to their ability to stick to numerous surfaces without undergoing chemical reactions. These materials are typically synthesized by the free radical copolymerization of alkyl acrylates and acrylic acid, leading to an ensemble of polymer chains with varying composition and molecular weight. Here, reversible addition−fragmentation chain‐transfer (RAFT) copolymerizations in a semi‐batch reactor are used to tailor the molecular architecture and bulk mechanical properties of acrylic copolymers. In the absence of cross‐links, the localization of acrylic acid toward the chain ends leads to microphase separation, creep resistance, and enhanced tack. However, in the presence of Al(acac)3 crosslinker, the creep resistance remains unchanged and mostly the large‐strain mechanical properties are affected. This behavior is attributed to microphase separation, but also to a change in the energy required to break physical associations, and untangle and elongate associative polymers to large deformations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.