Abstract

The basic leucine zipper (bZIP) superfamily is a crucial group of xenobiotics in insects. However, little is known about the function of CAAT enhancer binding proteins (CEBP) and cAMP response element binding protein (CREB) in Nilaparvata lugens. In the present study, NlCEBP and NlCREB were cloned and identified. Quantitative polymerase real-time chain reaction (qRT-PCR) analysis showed the expression of NlCEBP and NlCREB was significantly induced after chemical insecticides exposure. Silencing of NlCEBP and NlCREB increased the susceptibility of N. lugens to insecticides, and the detoxification enzyme activities were also significantly decreased. In addition, comparative transcriptome analysis revealed that 174 genes were significantly co-down-regulated after interfering with the two transcription factors. GO analysis showed that co-down-regulated genes are mostly related to energy transport and metabolic functions indicating the potential regulatory role of NlCEBP and NlCREB in detoxification metabolism. Our research shed lights on the functional roles of transcription factors NlCEBP and NlCREB in the detoxification metabolism of N. lugens, providing a theoretical basis for pest management and comprehensive control of this pest and increasing our understanding of insect toxicology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call