Abstract

The processes permeating the relationships between bioturbation and microorganisms remain poorly understood due to the difficulty of traditional techniques in quantifying their two- and three-dimensional aspects. We used cutting-edge technologies to address the macro- and microorganisms' interactions under metal-contamination. Bioturbation (mucus-lined gallery perimeter, mucus-lined gallery surface area, and gallery water volume) positively influence the carbohydrate consumption rate by the bacterial consortium, elevating bacterial metabolic activity, despite metal-contamination. Synchrotron-based 2D-μXRF revealed that the mucous lining by marine worm during bioturbation as the primary carbon source enhances metal immobilization by bacterial biofilm, improving the bacterial metabolic activity. Bioturbation thus can positively affect bacterial consortium that can use the mucus as a carbon source, which enhances the resistance to metals through biofilm formation in metal-contaminated sediments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call