Abstract
AbstractIn Senegal, agriculture is an important sector underpinning the socioeconomic fabric of the populace. Notably, the agricultural production in this region exhibits heightened sensitivity to climatic perturbations, particularly droughts and heat waves. This study aims to determine the resilience of different agronomic interventions for farmers practicing mixed farming that produce both crops (i.e., groundnut (Arachis hypogaea L.) and pearl millet (Pennisetum glaucum (L.) R. Br.)) and raise animals in the Groundnut Basin in Senegal, which holds historical and socioeconomic significance. To understand the current situation regarding demographics, economics, consumption behavior, and farm operations for smallholder farmers, data were comprehensively collected from government and nongovernment organizations (NGO) reports, scientific papers, organization databases, and surveys. Additionally, the Agricultural Production Systems sIMulator (APSIM) was used to understand how combinations of three planting dates, three plant densities, and six urea nitrogen (N) fertilizer rates affected the yield of pearl millet, which were used as the alternative scenarios to the baseline in the farm modeling and analyses. All the collected and generated data were used as inputs into the Farm Simulation Model (FARMSIM) to generate economic, nutritional, and risk data associated with mixed farming systems. The generated data were then used to determine the resilience of the alternative scenarios against the baseline. Initially, a multi‐objective optimization was employed to meet nutritional needs while maintaining a healthy diet at the lowest cost. Then, the scenarios that met the population's nutritional requirements were evaluated based on four economic indicators: net cash farm income (NCFI), ending cash reserves (EC), net present value (NPV), and internal rate of return (IRR). Lastly, those that passed the economic feasibility test were ranked based on risk criteria certainty equivalent (CE) and risk premium (RP). The analyses found N fertilizer rates of 0, 20, and 100 kg N ha−1 were generally economically not feasible. Additionally, medium (early‐July to late‐August) and late (late‐July to mid‐September) planting dates generally performed better than early (early‐June to late‐July) planting dates, while plant densities of 3.3 and 6.6 pL m−2 performed better than 1.1. The robust resilience approach introduced in this study is easily transferable to other regions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.