Abstract

Evidence for plastic degradation by mealworms has been reported. However, little is known about the residual plastics derived from incomplete digestion during mealworm-mediated plastic biodegradation. We herein reveal the residual plastic particles and toxicity produced during mealworm-mediated biodegradation of the three most common microplastics, i.e., polyethylene (PE), polystyrene (PS), and polyvinyl chloride (PVC). All three microplastics are effectively depolymerized and biodegraded. We discover that the PVC-fed mealworms exhibit the lowest survival rate (81.3 ± 1.5%) and the highest body weight reduction (15.1 ± 1.1%) among the experimental groups by the end of the 24-day experiment. We also demonstrate that the residual PVC microplastic particles are more difficult to depurate and excrete for the mealworms compared to the residual PE and PS particles by using laser direct infrared spectrometry. The levels of oxidative stress responses, including reactive oxygen species, antioxidant enzyme activities, and lipid peroxidation, are also highest in the PVC-fed mealworms. Sub-micron microplastics and small microplastics are found in the frass of mealworms fed with PE, PS, and PVC, with the smallest particles detected at diameters of 5.0, 4.0, and 5.9 µm, respectively. Our findings provide insights into the residual microplastics and microplastic-induced stress responses in macroinvertebrates under micro(nano)plastics exposure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call