Abstract
In the context of sustainable solutions, this study examines the pyrolysis process applied to corn cobs, with the aim of producing biochar and assessing its effectiveness in combating air pollution. In particular, it examines the influence of different pyrolysis temperatures on biochar properties. The results reveal a temperature-dependent trend in biochar yield, which peaks at 400 °C, accompanied by changes in elemental composition indicating increased stability and extended shelf life. In addition, high pyrolysis temperatures, above 400 °C, produce biochars with enlarged surfaces and improved pore structures. Notably, the highest pyrolysis temperature explored in this study is 600 °C, which significantly influences the observed properties of biochars. This study also explores the potential of biochar as an NO2 adsorbent, as identified by chemical interactions revealed by X-ray photoelectron spectroscopy (XPS) analysis. This research presents a promising and sustainable approach to tackling air pollution using corn cob biochar, providing insight into optimized production methods and its potential application as an effective NO2 adsorbent to improve air quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.