Abstract

Spinel cobalt oxide displays excellent photocatalytic performance, especially in solar driven water oxidation. However, the process of water reduction to hydrogen is considered as the Achilles' heel of solar water splitting over Co3 O4 owing to its low conduction band. Enhancement of the water splitting efficiency using Co3 O4 requires deeper insights of the carrier dynamics during water splitting process. Herein, the carrier dynamic kinetics of colloidal Co3 O4 quantum dots-Pt hetero-junctions is studied, which mimics the hydrogen reduction process during water splitting. It is showed that the quantum confinement effect induced by the small QD size raised the conduction band edge position of Co3 O4 QDs, so that the ligand-to-metal charge transfer from 2p state of oxygen to 3d state of Co2+ occurs, which is necessary for overall water splitting and cannot be achieved in Co3 O4 bulk crystals. The findings in this work provide insights of the photocatalytic mechanism of Co3 O4 catalysts and benefit rational design of Co3 O4 -based photocatalytic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.