Abstract

Proteus mirabilis could convert l-phenylalanine into 2-phenylethanol (2-PE) via the Ehrlich pathway, the amino acid deaminase pathway, and the aromatic amino acid decarboxylase pathway. The aromatic amino acid decarboxylase pathway was proved for the first time in P. mirabilis. In this pathway, l-aromatic amino acid transferase demonstrated a unique catalytic property, transforming 2-penylethylamine into phenylacetaldehyde. Eleven enzymes were supposed to involve in 2-phenylethanol synthesis. The mRNA expression levels of 11 genes were assessed over time by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in vivo. As a result, the expression of 11 genes was significantly increased, suggesting that P. mirabilis could transform l-phenylalanine into 2-phenylethanol via three pathways under aerobic conditions; nine genes were significantly overexpressed, suggesting that P. mirabilis could synthesize 2-phenylethanol via the Ehrlich pathway under anaerobic conditions. This study reveals the multipath synthetic metabolism for 2-phenylethanol in P. mirabilis and will enrich the new ideas for natural (2-PE) synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.