Abstract

Gold nanoparticles are valuable photothermal agents owing to their efficient photothermal conversion, photobleaching resistance, and potential surface functionalization. Herein, we combined bioinspired membranes with in vitro assays to elicit the molecular mechanisms of gold shell-isolated nanoparticles (AuSHINs) on ductal mammary carcinoma cells (BT-474). Langmuir and Langmuir-Schaefer (LS) films were handled to build biomembranes from BT-474 lipid extract. AuSHINs incorporation led to surface pressure-area (π-A) isotherms expansion, increasing membrane flexibility. Fourier-transform infrared spectroscopy (FTIR) of LS multilayers revealed electrostatic AuSHINs interaction with head portions of BT-474 lipid extract, causing lipid chain disorganization. Limited AuSHINs insertion into monolayer contributed to hydroperoxidation of the unsaturated lipids upon irradiation, consistently with the surface area increments of ca. 2.0%. In fact, membrane disruption of irradiated BT-474 cells containing AuSHINs was confirmed by confocal microscopy and LDH leakage, with greater damage at 2.2 × 1013 AuSHINs/mL. Furthermore, the decrease in nuclei dimensions indicates cell death through photoinduced damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call