Abstract

Glioblastoma (GBM) is the most common type of primary malignant tumor that develops in the brain, with 0.21 million new cases per year globally and a median survival period of less than 2 years after diagnosis. Traditional Korean medicines have been increasingly suggested as effective and safe therapeutic strategies for GBM. However, their pharmacological effects and mechanistic characteristics remain to be studied. In this study, we employed a computational network pharmacological approach to determine the effects and mechanisms of the traditional Korean medicinal formula FDY003 on GBM. We found that FDY003 treatment decreased the viability of human GBM cells and increased their response to chemotherapeutics. We identified 10 potential active pharmacological compounds of FDY003 and 67 potential GBM-related target genes and proteins. The GBM-related targets of FDY003 were signaling components of various crucial GBM-associated pathways, such as PI3K-Akt, focal adhesion, MAPK, HIF-1, FoxO, Ras, and TNF. These pathways are functional regulators for the determination of cell growth and proliferation, survival and death, and cell division cycle of GBM cells. Together, the overall analyses contribute to the pharmacological basis for the anti-GBM roles of FDY003 and its systematic mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.