Abstract
Phonon polaritons (PhPs), light coupled to lattice vibrations, in the highly anisotropic polar layered material molybdenum trioxide (α-MoO3) are currently the focus of intense research efforts due to their extreme subwavelength field confinement, directional propagation, and unprecedented low losses. Nevertheless, prior research has primarily concentrated on exploiting the squeezing and steering capabilities of α-MoO3 PhPs, without inquiring much into the dominant microscopic mechanism that determines their long lifetimes, which is key for their implementation in nanophotonic applications. This study delves into the fundamental processes that govern PhP damping in α-MoO3 by combining ab initio calculations with scattering-type scanning near-field optical microscopy (s-SNOM) and Fourier transform infrared (FTIR) spectroscopy measurements across a broad temperature range (8-300 K). The remarkable agreement between our theoretical predictions and experimental observations allows us to identify third-order anharmonic phonon-phonon scattering as the main damping mechanism of α-MoO3 PhPs. These findings shed light on the fundamental limits of low-loss PhPs, which is a crucial factor for assessing their implementation into nanophotonic devices.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.