Abstract

Mammalian cysteamine dioxygenase (ADO), a mononuclear non-heme Fe(II) enzyme with three histidine ligands, plays a key role in cysteamine catabolism and regulation of the N-degron signaling pathway. Despite its importance, the catalytic mechanism of ADO remains elusive. Here, we describe an HPLC-MS assay for characterizing thiol dioxygenase catalytic activities and a metal-substitution approach for mechanistic investigation using human ADO as a model. Two proposed mechanisms for ADO differ in oxygen activation: one involving a high-valent ferryl-oxo intermediate. We hypothesized that substituting iron with a metal that has a disfavored tendency to form high-valent states would discriminate between mechanisms. This chapter details the expression, purification, preparation, and characterization of cobalt-substituted ADO. The new HPLC-MS assay precisely measures enzymatic activity, revealing retained reactivity in the cobalt-substituted enzyme. The results obtained favor the concurrent dioxygen transfer mechanism in ADO. This combined approach provides a powerful tool for studying other non-heme iron thiol oxidizing enzymes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.