Abstract

Our study introduces the design of inverse sandwich (iSw) complexes incorporating a noble gas compound: xenon trioxide (XeO3). Through comprehensive computational analyses, we have investigated the critical factors influencing their stability by employing a variety of state-of-the-art computational tools. We demonstrated that the coordination number of xenon in the iSw complex of XeO3 with 18-crown-6 is influenced by the presence of a rare, weakly stabilizing Xe···Xe interaction between the XeO3 molecules. Furthermore, we observed that the stability of iSw complexes of 1,3,5-triphenylbenzene (TPB) and its derivatives is not solely attributed to aerogen bonding, but also involves contributions from C-H···O interactions and back-donation from the lone pair of Xe to the antibonding C-C orbitals of TPB. Additionally, the significant contributions from orbital interactions and dispersion interactions in the TPB derivatives highlight the multifaceted amphoteric properties of XeO3 and reveal that the iSw complexes of TPB and derivatives are not predominantly governed by electrostatic interactions, contrary to conventional belief.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.