Abstract

Bismuth vanadate (BiVO4) has been one of the most extensively investigated materials in photocatalytic fields owing to its low cost and high performance. Despite much available evidences about its band alignment and photogenerated carrier migration, a convincing explanation of how photogenerated carrier migration occurs in its polymorph phase junction as well as its exact electronic structure has remained elusive. Herein, we designed a high-quality hierarchical tzBiVO4/msBiVO4 phase junction to elucidate the photogenerated carrier migration process and its correlated band alignment. Via the X-ray photoelectron spectroscopy (XPS) and the density functional theory (DFT) calculations, we unveil that a particular band alignment containing Z-scheme and type-II features exists between tzBiVO4 and msBiVO4, where the tzBiVO4 component in tzBiVO4/msBiVO4 showing a higher collecting and oxidizing ability of the photogenerated holes at the designed interface. Importantly, this study offers a new understanding of the BiVO4 atomistic nature of bonding, electronic structure and their related photocatalytic nature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.