Abstract

Ti3C2Tx MXene is a member of the recently discovered two-dimensional early transition metal carbide and nitride family of MXenes with potential applications in energy storage and heterogeneous catalysis at elevated temperatures. Here, we apply a suite of in situ techniques to probe Ti3C2Tx MXene's thermal evolutions, including in situ X-ray diffraction (XRD), in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and integrated thermogravimetry-differential scanning calorimetry-mass spectrometry (TG-DSC-MS). In light of this set of in situ investigations, we find heterogeneity in the layering of Ti3C2Tx MXene revealed only at higher temperatures. Our findings present behavior up to 600 °C, particularly interlayer water and -OH surface end-capping groups. In one group of layers, their interlayer spacing shrinks as water deintercalates, but the other group of layers unexpectedly shows no change in the interlayer spacing. This is strong evidence that intercalants act as guest pillaring agents in the latter layering group, which stabilize these layers at higher temperatures while keeping the interlayer space accessible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call