Abstract

Graphene hybrid-filler polymer composites have emerged as prominent materials that revolutionize heavy industries. This review paper encapsulates an in-depth analysis of different influential factors, such as filler/graphene type, aspect ratios, dispersion methods, filler-matrix compatibility, fiber orientation, synergistic effects, different processing techniques, and post-curing conditions, which affect the processing and properties of graphene hybrid polymer composites, as well as their resultant applications. Additionally, it discusses the substantial role of graphene reinforcement with other fillers, such as carbon nanotubes, silica, nano-clays, and metal oxides, to produce functionalized hybrid polymer composites with synergistically enhanced tailored properties, offering solutions for heavy industries, including aerospace, automotive, electronics, and energy harvesting. This review concludes with some suggestions and an outlook on the future of these composite materials by emphasizing the need for continued research to fully optimize their potential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call