Abstract
Semipermeable polymersomes, a class of polymeric vesicles that allow molecular passage across their membranes, offer significant potential for controlled drug delivery. These vesicles can be designed for inherent or selective permeability through the choice of suitable copolymers or the incorporation of protein nanopores, respectively. In this study, we explore a novel approach using oxygen-producing enzymatic reactions within biodegradable poly(ethylene glycol)-poly(caprolactone-gradient-trimethylene carbonate) (PEG-p(CL-g-TMC)) polymersomes to modulate drug release. These polymersomes were found to enhance the release of hydrophobic drugs while retaining hydrophilic drugs. The enzymatic generation of oxygen within the polymersomes increased membrane hydrophobicity, influencing drug release kinetics. The findings highlight the importance of understanding drug release kinetics in designing effective drug delivery systems, as the release rate and mechanism critically impact therapeutic efficacy and patient outcomes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.