Abstract

Since the 1950s, antibiotics have been used in the field of animal husbandry for growth promotion, therapy and disease prophylaxis. It is estimated that up to 80% of the antibiotics produced by the pharmaceutical industries are used in food production. Most of the antibiotics are used as feed additives at sub-therapeutic levels to promote growth. However, studies show the indiscriminate use of antibiotics has led to the emergence of multidrug-resistant pathogens that threaten both animal health and human health, including vancomycin-resistant Enterococcus (VRE), Methicillin-resistant Staphylococcus aureus (MRSA) and carbapenem-resistant Enterobacteriaceae (CRE). This scenario is further complicated by the slow progress in achieving scientific breakthroughs in uncovering novel antibiotics following the 1960s. Most of the pharmaceutical industries have long diverted research funds away from the field of antibiotic discovery to more lucrative areas of drug development. If this situation is allowed to continue, humans will return to the pre-antibiotics era and potentially succumb to huge health and economic consequences. Fortunately, studies investigating various alternatives to antibiotics use in livestock show promising results. These alternatives include the application of bacteriophages and phage derived peptidoglycan degrading enzymes, engineered peptides, egg yolk antibodies, probiotics, prebiotics and synbiotics, as well as quorum quenching molecules. Therefore, this review aims to discuss the use of growth-promoting antibiotics and their impact on livestock and provide insights on the alternative approaches for animal husbandry.

Highlights

  • The complete removal of antibiotics administration in livestock is impossible at this stage, as it would lead to severe disruptions in worldwide meat production

  • Feasible solution to this age-old problem would focus on utilising alternative agents which are both effective and economical for disease prevention and growth promotion, while retaining the use of antibiotics in treating animal diseases upon veterinary prescriptions. This is a viable option, as it has been shown that with controlled use of antibiotics in livestock, resistance levels can decrease to original parameters in a particular area

  • By altering the genes encoding for the spore-coat proteins in Bacillus spp., various peptides have been successfully expressed on the surfaces of the spores produced by the genetically-modified bacteria

Read more

Summary

Introduction

A study by Stokstad, et al [2], which was initially designed to investigate the fermentation byproducts of Streptomyces aureofaciens as an inexpensive source of vitamin B12 for animal

Objectives
Methods
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call