Abstract

Many prokaryotic and eukaryotic proteins contain domains of unknown function (DUFs). A DUF3129 family of proteins is widely encoded in the genomes of fungal pathogens. A few studies in plant and insect pathogens indicated that the DUF3129 genes are required for fungal penetration of host cuticles with an unclear mechanism. We found that a varied number of DUF3129 proteins is present in different fungal species and the proteins are evolutionarily diverged from each other at the inter- and intra-specific levels. By using the insect pathogenic fungus Metarhizium robertsii as a model, we performed experiments and found that the seven DUF3129 proteins encoded by this fungus are localized to cellular lipid droplets (LDs). Individual deletion of these genes did not affect fungal formation of the infection structure appressoria and the accumulation of LDs in fungal conidia. When compared with the wild-type (WT) strain, insect bioassays revealed that the virulence of most null mutants were significantly impaired during topical infection but not during injection of insects. Carbon starvation and the subsequent Western blot analysis indicated that the LD-specific perilipin protein was completely degraded in the WT cells whereas varied levels of perilipin could be detected in the mutant cells, which signified that depletion of LD content was delayed in mutant cells, and DUF3129 proteins are therefore involved in LD degradation. We also provided biochemical evidence that these DUF3129 genes are transcriptionally regulated by a yeast Ste12-like transcription factor. The findings of this study not only unveil the function of DUF3129 proteins but also better understand the diverse mechanism of fungus-host interactions. This article is part of the theme issue 'Biotic signalling sheds light on smart pest management'.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call