Abstract

Conventional analytic techniques that measure ensemble averages and static disorder provide essential knowledge of the reaction mechanisms of organic and organometallic reactions. However, single-molecule junctions enable the in situ, label-free and non-destructive sensing of molecular reaction processes at the single-event level with an excellent temporal resolution. Here we deciphered the mechanism of Pd-catalysed Suzuki-Miyaura coupling by means of a high-resolution single-molecule platform. Through molecular engineering, we covalently integrated a single molecule Pd catalyst into nanogapped graphene point electrodes. We detected sequential electrical signals that originated from oxidative addition/ligand exchange, pretransmetallation, transmetallation and reductive elimination in a periodic pattern. Our analysis shows that the transmetallation is the rate-determining step of the catalytic cycle and clarifies the controversial transmetallation mechanism. Furthermore, we determined the kinetic and thermodynamic constants of each elementary step and the overall catalytic timescale of this Suzuki-Miyaura coupling. Our work establishes the single-molecule platform as a detection technology for catalytic organochemistry that can monitor transition-metal-catalysed reactions in real time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.