Abstract

BackgroundGeroscience focuses on interventions to mitigate molecular changes associated with aging. Lifestyle modifications, medications, and social factors influence the aging process, yet the complex molecular mechanisms require an in-depth exploration of the epigenetic landscape. The specific epigenetic clock and predictor effects of a vegan diet, compared to an omnivorous diet, remain underexplored despite potential impacts on aging-related outcomes.MethodsThis study examined the impact of an entirely plant-based or healthy omnivorous diet over 8 weeks on blood DNA methylation in paired twins. Various measures of epigenetic age acceleration (PC GrimAge, PC PhenoAge, DunedinPACE) were assessed, along with system-specific effects (Inflammation, Heart, Hormone, Liver, and Metabolic). Methylation surrogates of clinical, metabolite, and protein markers were analyzed to observe diet-specific shifts.ResultsDistinct responses were observed, with the vegan cohort exhibiting significant decreases in overall epigenetic age acceleration, aligning with anti-aging effects of plant-based diets. Diet-specific shifts were noted in the analysis of methylation surrogates, demonstrating the influence of diet on complex trait prediction through DNA methylation markers. An epigenome-wide analysis revealed differentially methylated loci specific to each diet, providing insights into the affected pathways.ConclusionsThis study suggests that a short-term vegan diet is associated with epigenetic age benefits and reduced calorie intake. The use of epigenetic biomarker proxies (EBPs) highlights their potential for assessing dietary impacts and facilitating personalized nutrition strategies for healthy aging. Future research should explore the long-term effects of vegan diets on epigenetic health and overall well-being, considering the importance of proper nutrient supplementation.Trial registrationClinicaltrials.gov identifier: NCT05297825

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.