Abstract

In our study, we investigated the structural and electronic properties of bismuth triphosphide (BiP3) in its bulk, few-layer, and monolayer forms. We found that BiP3 in bulk exhibits a metallic stable layered structure. The exfoliation energy of 1.07 J/m2 indicates ease exfoliation, comparable to other triphosphides. The band gap varies with thickness, transitioning from semiconductor–metal between four to five layers, influenced by interlayer coupling and quantum confinement. We also investigated the heterostructure created by depositing graphene (G) on few-layer BiP3. In monolayer (G/m-BiP3) and bilayer (G/2L-BiP3) forms, a metal–semiconductor junction is formed, characterized by weak vdW interactions at the interface and exhibiting p-type Schottky contacts. We observed that the Schottky Barrier Height (SBH) can be modulated by altering the interlayer distance between G and BiP3. This adjustment allows transitions between n-type and p-type Schottky contacts in G/m-BiP3 and the formation of an ohmic contact in G/2L-BiP3. Furthermore, applying an electric field affects the SBH, leading to similar transitions and the development of an ohmic contact. Additionally, our study shows that n-doping in graphene increases with the number of BiP3 layers and external electric field application. These properties position BiP3 few-layer as a promising material for nanoelectronic, optoelectronic, and graphene-based devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.