Abstract

Pseudomonas aeruginosa chronic infections are the major cause of high morbidity and mortality in cystic fibrosis (CF) patients due to the use of sophisticated mechanisms of adaptation, including clonal diversification into specialized CF-adapted phenotypes. In contrast to chronic infections, very little is known about what occurs after CF lungs colonization and at early infection stages.This study aims to investigate the early events of P. aeruginosa adaptation to CF environment, in particular, to inspect the occurrence of clonal diversification at early stages of infection development and its impact on antibiotherapy effectiveness.To mimic CF early infections, three P. aeruginosa strains were long-term grown in artificial sputum (ASM) over 10 days and phenotypic diversity verified through colony morphology characterization. Biofilm sub- and inhibitory concentrations of ciprofloxacin were applied to non- and diversified populations to evaluate antibiotic effectiveness on P. aeruginosa eradication.Our results demonstrated that clonal diversification might occur after ASM colonization and growth. However, this phenotypic diversification did not compromise ciprofloxacin efficacy in P. aeruginosa eradication since a biofilm minimal inhibitory dosage would be applied. The expected absence of mutators in P. aeruginosa populations led us to speculate that clonal diversification in the absence of ciprofloxacin treatments could be driven by niche specialization. Yet, biofilm sub-inhibitory concentrations of ciprofloxacin seemed to overlap niche specialization as “fitter” variants emerged, such as mucoid, small colony and pinpoint variants, known to be highly resistant to antibiotics. The pathogenic potential of all emergent colony morphotypes-associated bacteria, distinct from the wild-morphotypes, revealed that P. aeruginosa evolved to a non-swimming phenotype. Impaired swimming motility seemed to be one of the first evolutionary steps of P. aeruginosa in CF lungs that could pave the way for further adaptation steps including biofilm formation and progress to chronic infection. Based on our findings, impaired swimming motility seemed to be a candidate to disease marker of P. aeruginosa infection development. Despite our in vitro CF model represents a step forward towards in vivo scenario simulation and provided valuable insights about the early events, more and distinct P. aeruginosa strains should be studied to strengthen our results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.