Abstract

Due to its large hole mobility, organic rubrene (C42H28) has attracted research questions regarding its applications in electronic devices. In this work, extensive first-principles calculations are performed to predict some temperature- and doping-dependent properties of organic semiconductor rubrene. We use density functional theory (DFT) to investigate the electronic structure, elastic and transport properties of the orthorhombic phase of the rubrene compound. The calculated band structure shows that the orthorhombic phase has a direct bandgap of 1.26 eV. From the Vickers hardness (1.080 GPa), our calculations show that orthorhombic rubrene is not a super hard material and can find useful application as a flexible semiconductor. The calculated transport inverse effective mass and electronic fitness function show that the orthorhombic rubrene crystal structure is a p-type thermoelectric material at high temperatures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.