Abstract
BackgroundThe field of Alzheimer's disease (AD) diagnosis is undergoing significant transformation due to the application of deep learning (DL) models. While DL surpasses traditional machine learning in disease prediction from structural magnetic resonance imaging (sMRI), the lack of explainability limits clinical adoption. Counterfactual inference offers a way to integrate causal explanations into these models, enhancing their robustness and transparency. New methodThis study develops a novel methodology combining U-Net and generative adversarial network (GAN) models to create comprehensive counterfactual diagnostic maps for AD. The proposed methodology uses case-based counterfactual reasoning for robust decision classification for counterfactual maps to understand how changes in specific features affect the model's predictions. Comparison with existing methodsThe proposed methodology is compared with state-of-the-art visual explanation techniques across the ADNI dataset. The proposed methodology is also benchmarked against other gradient-based and generative models for its ability to generate comprehensive counterfactual maps. ResultsThe results demonstrate that the proposed methodology significantly outperforms existing methods in accuracy, sensitivity, and specificity while providing detailed counterfactual maps that visualize how slight changes in brain morphology could lead to different diagnostic outcomes. The proposed methodology achieves an accuracy of 95% and an AUC of 0.97, illustrating its superiority in capturing subtle yet crucial anatomical features. ConclusionsBy generating intuitive visual explanations, the proposed methodology improves the interpretability and robustness of AD diagnostic models, making them more reliable and accountable. The use of counterfactual inference enhances clinicians' understanding of disease progression and the impact of different interventions, fostering precision medicine in AD care.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.