Abstract

Organic phosphors exhibiting room-temperature phosphorescence (RTP) in the amorphous phase are promising candidates for optoelectronic and biomedical applications. In particular, noncovalently embedding organic phosphors into a poly(vinyl alcohol) (PVA) matrix has emerged as the most commonly used yet effective approach to obtain amorphous organic RTP materials. While the role of intermolecular hydrogen-bonding interactions in determining the RTP properties of doping PVA systems has been well documented, we show that electrostatic and dispersion interactions contribute crucially to the ultralong RTP properties of doping PVA films. This impressive outcome reveals the nature of non-covalent interactions existing in doping PVA systems for the first time. We demonstrate this through detailed experimental and computational studies for a series of hydrogen-bond crosslinked PVA films where star-shaped organic phosphors containing active groups of carboxy, hydroxy, and amino act as multisite crosslinkers for the construction of extensive hydrogen-bonding networks. More importantly, we successfully obtain an ultralong RTP lifetime of up to 1.74 s by tuning the electrostatic and dispersion interactions between organic phosphors and the PVA matrix through simply modifying active groups of organic phosphors. This instructive work will provide new guiding principles for the exploration of amorphous organic RTP systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.