Abstract

Metabolic analysis in animals is usually either evaluated as whole-body measurements or in isolated tissue samples. To reveal tissue specificities in vivo, this study uses scanning electrochemical microscopy (SECM) to provide localized oxygen consumption rates (OCRs) in different regions of single adult Caenorhabditis elegans individuals. This is achieved by measuring the oxygen reduction current at the SECM tip electrode and using a finite element method model of the experiment that defines oxygen concentration and flux at the surface of the organism. SECM mapping measurements uncover a marked heterogeneity of OCR along the worm, with high respiration rates at the reproductive system region. To enable sensitive and quantitative measurements, a self-referencing approach is adopted, whereby the oxygen reduction current at the SECM tip is measured at a selected point on the worm and in bulk solution (calibration). Using genetic and pharmacological approaches, our SECM measurements indicate that viable eggs in the reproductive system are the main contributors in the total oxygen consumption of adult Caenorhabditis elegans. The finding that large regional differences in OCR exist within the animal provides a new understanding of oxygen consumption and metabolic measurements, paving the way for tissue-specific metabolic analyses and toxicity evaluation within single organisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call