Abstract

The primary objective of this study was to elucidate the putative cell wall-associated targets of compound 6i, a glycoconjugate of eugenol, in Aspergillus fumigatus, while also evaluating its toxicity and assessing histopathologic alterations in the liver, heart, and kidney of compound 6i-treated embryos using an in ovo model. To achieve this aim, compound 6i was synthesized, and a series of biochemical assays were performed to determine its impact on the fungal cell wall. Additionally, qRT-PCR and LC-MS/MS analyses were conducted to investigate changes in gene and protein expression profiles associated with melanin biosynthesis, conidiation, siderophore production, transcriptional regulation of β-glucan biosynthesis, and calcineurin activity in A. fumigatus. The experimental findings revealed that compound 6i exhibited notable antifungal activity against A. fumigatus by perturbing cell wall integrity, hindering ergosterol, glucan, and chitin biosynthesis, and inhibiting catalase production. Moreover, relative gene expression and proteomic analyses demonstrated that compound 6i exerted both down-regulatory and up-regulatory effects on several crucial genes and proteins involved in the aforementioned fungal processes. Furthermore, increased expression of oxidative stress-related proteins was observed in the presence of compound 6i. Notably, the glycoconjugate of eugenol did not elicit cytotoxicity in the liver, heart, and kidney of chick embryos. The current investigation elucidated the multifaceted mechanisms by which compound 6i exerts its antifungal effects against A. fumigatus, primarily through targeting cell wall components and signaling pathways. These findings underscore the potential of the eugenol glycoconjugate as a promising antifungal candidate, warranting further exploration and development for combating A. fumigatus infections.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.