Abstract

M−N−C‐type single‐atom catalysts (SACs) are highly efficient for the electrocatalytic oxygen evolution reaction (OER). And the isolated metal atoms are usually considered real active sites. However, the oxidative structural evolution of coordinated N during the OER will probably damage the structure of M−N−C, hence resulting in a completely different reaction mechanism. Here, we reveal the aggregation of M−N−C materials during the alkaline OER. Taking Ni−N−C as an example, multiple characterizations show that the coordinated N on the surface of Ni‐N‐C is almost completely dissolved in the form of NO3−, accompanied by the generation of abundant O functional groups on the surface of the carbon support. Accordingly, the Ni−N bonds are broken. Through a dissolution‐redeposition mechanism and further oxidation, the isolated Ni atoms are finally converted to NiOOH nanoclusters supported by carbon as the real active sites for the enhanced OER. Fe−N−C and Co−N−C also have similar aggregation mechanism. Our findings provide unique insight into the structural evolution and activity origin of M−N−C‐based catalysts under electrooxidative conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.