Abstract

BackgroundSphingosine-1-phosphate receptor 2 (S1PR2) mediates pleiotropic functions encompassing cell proliferation, survival, and migration, which become collectively de-regulated in cancer. Information on whether S1PR2 participates in colorectal carcinogenesis/cancer is scanty, and we set out to fill the gap.MethodsWe screened expression changes of S1PR2 in human CRC and matched normal mucosa specimens [N = 76]. We compared CRC arising in inflammation-driven and genetically engineered models in wild-type (S1PR2+/+) and S1PR2 deficient (S1PR2−/−) mice. We reconstituted S1PR2 expression in RKO cells and assessed their growth in xenografts. Functionally, we mimicked the ablation of S1PR2 in normal mucosa by treating S1PR2+/+ organoids with JTE013 and characterized intestinal epithelial stem cells isolated from S1PR2−/−Lgr5-EGFP- mice.ResultsS1PR2 expression was lost in 33% of CRC; in 55%, it was significantly decreased, only 12% retaining expression comparable to normal mucosa. Both colitis-induced and genetic Apc+/min mouse models of CRC showed a higher incidence in size and number of carcinomas and/or high-grade adenomas, with increased cell proliferation in S1PR2−/− mice compared to S1PR2+/+ controls. Loss of S1PR2 impaired mucosal regeneration, ultimately promoting the expansion of intestinal stem cells. Whereas its overexpression attenuated cell cycle progression, it reduced the phosphorylation of AKT and augmented the levels of PTEN.ConclusionsIn normal colonic crypts, S1PR2 gains expression along with intestinal epithelial cells differentiation, but not in intestinal stem cells, and contrasts intestinal tumorigenesis by promoting epithelial differentiation, preventing the expansion of stem cells and braking their malignant transformation. Targeting of S1PR2 may be of therapeutic benefit for CRC expressing high Lgr5.Graphical . Schematic drawing of the role of S1PR2 in normal mucosa and colorectal cancer. In the normal mucosa, S1PR2 is highly expressed by differentiated cells at the upper region of both colon and intestinal crypts (S1PR2 ON), but not by the undifferentiated stem cell at the base of the crypts (S1PR2 OFF), in which acts as a negative proliferative regulator promoting epithelial differentiation. Its loss leads to the expansion of stem cells and reduced levels of PTEN and Axin-2, two negative regulators respectively of PI3K/AKT and Wnt signaling that control β-catenin signaling. The translocation of β-catenin into the nucleus promotes the transcription of target genes involved in the proliferation and malignant transformation. Thereby, S1PR2 works in the intestine as a tumor suppressor

Highlights

  • Sphingosine-1-phosphate receptor 2 (S1PR2) mediates pleiotropic functions encompassing cell proliferation, survival, and migration, which become collectively de-regulated in cancer

  • Targeting of S1PR2 may be of therapeutic benefit for Colorectal cancer (CRC) expressing high Lgr5

  • In CRC samples, S1PR2 was significantly decreased as compared to normal mucosa (p = 0.043), whereas no difference was observed for S1PR1 and S1PR3 levels (Fig. 1a), indicating that only S1PR2 expression is reduced in CRC

Read more

Summary

Introduction

Sphingosine-1-phosphate receptor 2 (S1PR2) mediates pleiotropic functions encompassing cell proliferation, survival, and migration, which become collectively de-regulated in cancer. The association with different G proteins activate several downstream pathways contributing to the regulation of many cellular mechanisms [3]. Colorectal cancer (CRC) is a heterogeneous disease in which different subtypes may be distinguished according to their clinical and molecular features [13]. Intestinal stem cells play an important role in CRC pathogenesis due to their pre-existing proliferative and self-healing behavior, suggesting them to serve as the source for most colorectal cancers [14]. According to the traditional ‘bottom-up’ model of CRC development, the transformation of Lgr5+ crypt stem-cells is the principal mechanism initiating the aberrant growth leading to adenomatous polyps, predisposing to cancer [14]. The molecular cues driving these events remain to be elucidated

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call