Abstract
Fully converged nonadiabatic dynamics calculations of the D+ + H2 → H+ + HD reaction are performed at low temperatures using the time-dependent wave packet approach based on a set of precise 3 × 3 diabatic potential energy surfaces (PESs) ( Phys. Chem. Chem. Phys., 2021, 23, 7735-7747, DOI: 10.1039/D0CP04100A). The D+ + H2 reaction is mediated by a dense manifold of resonances associated with the deep potential well on the ground-state PES. The calculated results show that the nonadiabatic coupling can affect the resonance positions, deviating from the expectation based solely on adiabatic considerations. Furthermore, significant forward-backward asymmetry in total differential cross sections (DCSs) is revealed, which is markedly influenced by nonadiabatic effects. The nonadiabatic effects not only affect the contribution of partial waves in the reaction but also make the interference patterns in the DCSs change significantly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.