Abstract

Microorganisms play a crucial role in both the nitrogen cycle and greenhouse gas emissions. A recent discovery has unveiled a new denitrification pathway called oxygenic denitrification, entailing the enzymatic reduction of nitrite to nitric oxide (NO) by a putative nitric oxide dismutase (nod) enzyme. In this study, the presence of the nod gene was detected and subsequently enriched in anaerobic-activated sludge, farmland soil, and paddy soil samples. After 150 days, the enriched samples exhibited significant denitrification, and concomitant oxygen production. The removal efficiency of nitrite ranged from 64.6 % to 79.0 %, while the oxygen production rate was between 15.4 μL/min and 18.6 μL/min when exposed to a sole nitrogen source of 80 mg/L sodium nitrite. Additionally, batch experiments and kinetic analyses revealed the intricate pathways and underlying mechanisms governing the oxygenic denitrification reaction by using CARBOXY-PTIO, 18O-labelled water, and acetylene to unravel the intricacies of the reaction. The quantitative polymerase chain reaction (qPCR) results indicated a significant surge in the abundance of nod genes, escalating from 7.59 to 10.12-fold. Moreover, analysis of 16S ribosomal DNA (rDNA) amplicons revealed Proteobacteria as the dominant phylum and Thauera as the main genus, with the presumed affiliation. In this study, a new nitrogen conversion pathway, oxygenic denitrification, was discovered in environmental samples. This process provides the possibility for the control of nitrous oxide in the treatment of nitrogenous wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.