Abstract
The development of efficient and stable photocatalysts holds vital importance in the fast and effective removal of toxic contaminants from wastewater. In this study, novel 1D/2D BiVO4-OV/NiMoO4 hybrid with enriched oxygen vacancies (BiVO4-OV/NiMoO4) were successfully synthesized by using one step hydrothermal synthesis route. Utilizing the p-n heterojunction and oxygen vacancies, the optimized BiVO4-OV/NiMoO4 composite exhibited exceptional photocatalytic efficiency, achieving a photocatalytic degradation efficiency of 92 % for rhodamine B (RhB) under visible light irradiation within 60 min. The apparent rate constant of value of optimized BiVO4-OV/NiMoO4 composite is 0.02864 min−1, exceeding those of BiVO4 and NiMoO4 by 4.4 times and 5.5 times, respectively. The photocatalytic mechanism and degradation pathways of RhB were investigated through active species trapping experiment. Remarkably, optimized BiVO4-OV/NiMoO4 hybrid demonstrated high stability and recyclability. This study on the development of highly efficient visible-light catalysts through synergistic defect and heterojunction engineering, offering a promising approach for organic pollutant degradation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.