Abstract

Understanding the evolutionary dynamics of foodborne pathogens throughout host-associated habitats is of utmost importance. Bacterial pan-genomes, as dynamic entities, are strongly influenced by ecological lifestyles. As a phenotypically diverse species in the Bacillus cereus group, Bacillus paranthracis is recognized as an emerging foodborne pathogen and a probiotic simultaneously. This poorly understood species is a suitable study model for adaptive pan-genome evolution. In this study, we determined the biogeographic distribution, abundance, genetic diversity, and genotypic profiles of key genetic elements of B. paranthracis. Metagenomic read recruitment analyses demonstrated that B. paranthracis members are globally distributed and abundant in host-associated habitats. A high-quality pan-genome of B. paranthracis was subsequently constructed to analyze the evolutionary dynamics involved in ecological adaptation comprehensively. The open pan-genome indicated a flexible gene repertoire with extensive genetic diversity. Significant divergences in the phylogenetic relationships, functional enrichment, and degree of selective pressure between the different components demonstrated different evolutionary dynamics between the core and accessory genomes driven by ecological forces. Purifying selection and gene loss are the main signatures of evolutionary dynamics in B. paranthracis pan-genome. The plasticity of the accessory genome is characterized by horizontal gene transfer (HGT), massive gene losses, and weak purifying or positive selection, which might contribute to niche-specific adaptation. In contrast, although the core genome dominantly undergoes purifying selection, its association with HGT and positively selected mutations indicates its potential role in ecological diversification. Furthermore, host fitness-related dynamics are characterized by the loss of secondary metabolite biosynthesis gene clusters (BGCs) and CAZyme-encoding genes and the acquisition of antimicrobial resistance (AMR) and virulence genes via HGT. This study offers a case study of pan-genome evolution to investigate the ecological adaptations reflected by biogeographical characteristics, thereby advancing the understanding of intraspecific diversity and evolutionary dynamics of foodborne pathogens.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.