Abstract

We propose a novel scheme of examining the host–guest–solvent interactions in solution from their gas phase structures. By adopting the permethylated β-cyclodextrin (perm β-CD)–protonated L-Lysine non-covalent complex as a prototypical system, we present the infrared multiple photon dissociation (IRMPD) spectrum of the gas phase complex produced by electrospray ionization technique. In order to elucidate the structure of perm β-CD)/LysH+ complex in the gas phase, we carry out quantum chemical calculations to assign the two strong peaks at 3,340 and 3,560 cm−1 in the IRMPD spectrum, finding that the carboxyl forms loose hydrogen bonding with the perm β-CD, whereas the ammonium group of L-Lysine is away from the perm β-CD unit. By simulating the structures of perm β-CD/H+/L-Lysine complex in solution using the supramolecule/continuum model, we find that the extremely unstable gas phase structure corresponds to the most stable conformer in solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.