Abstract
Accurate fine-mode and coarse-mode aerosol knowledge is crucial for understanding their impacts on the climate and Earth's ecosystems. However, current satellite-based Fine-Mode Aerosol Optical Depth (FAOD) and Coarse-Mode Aerosol Optical Depth (CAOD) methods have drawbacks including inaccuracies, low spatial coverage, and limited temporal duration. To overcome these issues, we developed new global-scale FAOD and CAOD from 2005 to 2020 using a novel deep learning model capable of the synergistic retrieval of two aerosol sizes. After validation with the aerosol robotic network (AERONET) and sky radiometer network (SKYNET), the new monthly FAOD and CAOD showed significant improvements in accuracy and spatial coverage. From 2005 to 2020, the new data showed that China had the greatest decrease in FAOD and CAOD. In contrast, India and South Latin America had a significant increase in FAOD versus North Africa in CAOD. FAOD in the regions of Argentina, Paraguay, and Uruguay in South America have shown an upward trend. The results reveal that FAOD and CAOD display distinct patterns of change in the same regions, particularly on the west coast of the United States where FAOD is increasing, while CAOD is decreasing. Aside from the year 2020 due to the global COVID-19 pandemic, the analysis showed that although China has seen at least an +85% increase in energy consumption and urban expansion in 2019 compared to 2005 due to the needs of development and construction, the implementation of China's air pollution control policies has led to a significant decrease in FAOD (−46%) and CAOD (−65%) after 2013. This research enriches our comprehension of global fine and coarse aerosol patterns, additional investigations are needed to determine the potential global implications of these changes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.