Abstract

BackgroundSheep production in Israel has improved by crossing the fat-tailed local Awassi breed with the East Friesian and later, with the Booroola Merino breed, which led to the formation of the highly prolific Afec-Assaf strain. This strain differs from its parental Awassi breed in morphological traits such as tail and horn size, coat pigmentation and wool characteristics, as well as in production, reproductive and health traits. To identify major genes associated with the formation of the Afec-Assaf strain, we genotyped 41 Awassi and 141 Afec-Assaf sheep using the Illumina Ovine SNP50 BeadChip array, and analyzed the results with PLINK and EMMAX software. The detected variable genomic regions that differed between Awassi and Afec-Assaf sheep (variable genomic regions; VGR) were compared to selection signatures that were reported in 48 published genome-wide association studies in sheep. Because the Afec-Assaf strain, but not the Awassi breed, carries the Booroola mutation, association analysis of BMPR1B used as the test gene was performed to evaluate the ability of this study to identify a VGR that includes such a major gene.ResultsOf the 20 detected VGR, 12 were novel to this study. A ~7-Mb VGR was identified on Ovies aries chromosome OAR6 where the Booroola mutation is located. Similar to other studies, the most significant VGR was detected on OAR10, in a region that contains candidate genes affecting horn type (RXFP2), climate adaptation (ALOX5AP), fiber diameter (KATNAl1), coat pigmentation (FRY) and genes associated with fat distribution. The VGR on OAR2 included BNC2, which is also involved in controlling coat pigmentation in sheep. Six other VGR contained genes that were shown to be involved in coat pigmentation by analyzing their mammalian orthologues. Genes associated with fat distribution in humans, including GRB14 and COBLL1, were located in additional VGR. Sequencing DNA from Awassi and Afec-Assaf individuals revealed non-synonymous mutations in some of these candidate genes.ConclusionsOur results highlight VGR that differentiate the Awassi breed from the Afec-Assaf strain, some of which may include genes that confer an advantage to Afec-Assaf and Assaf over Awassi sheep with respect to intensive sheep production under Mediterranean conditions.

Highlights

  • Sheep production in Israel has improved by crossing the fat-tailed local Awassi breed with the East Friesian and later, with the Booroola Merino breed, which led to the formation of the highly prolific Afec-Assaf strain

  • By using the ovine single nucleotide polymorphism (SNP) 50 BeadChip array (Illumina Inc., San Diego, CA) and BMPR1B as a test gene, the aims of our study were to: (1) compare the Awassi and Afec-Assaf genomes, searching for variable genomic regions (VGR) that differ between the two breeds; and (2) link these VGR to genes and selection signatures that were previously described in sheep genome-wide association studies (GWAS)

  • After annotating 107 genes associated with fat distribution in humans [60,61,62,63,64], we found that the DCST2 gene was annotated close to VGR #3 on OAR1, and that two genes, GRB14 and COBLL1, were both located close to VGR #7 on OAR2

Read more

Summary

Introduction

Sheep production in Israel has improved by crossing the fat-tailed local Awassi breed with the East Friesian and later, with the Booroola Merino breed, which led to the formation of the highly prolific Afec-Assaf strain. This strain differs from its parental Awassi breed in morphological traits such as tail and horn size, coat pigmentation and wool characteristics, as well as in production, reproductive and health traits. In Israel, within-breed selection, crossbreeding and gene introgression have contributed to the transition of the sheep industry from traditional extensive production using the native fat-tailed local Awassi breed to highly intensive production with the Assaf and Afec-Assaf sheep [1]. Since the perinatal lamb survival rate is higher in B+ than in BB ewes, B+ is the recommended

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call