Abstract

The electron transfer pathway activated by peroxymonosulfate (PMS) has garnered significant attention for the removal of emerging organic pollutants from water. However, overcoming the two-step energy barriers involved in electron transport across reaction interfaces presents a formidable challenge. To surmount the two-step energy barriers of pollutant-catalyst and catalyst-PMS, a catalyst with nano-island structure was developed, forming efficient ternary catalytic interfaces with PMS and pollutants. The presence of atomic pairs within the catalyst punched through the electron transport channels, resulting in a pseudo-first-order kinetic rate of 2.06 min−1 for bisphenol A, which was 5.1 times higher than that of the control sample. The electronic coupling of atomic pairs exerted a profound impact on the splitting of d-orbitals, effectively elevating the d-orbital unoccupancy and reducing the two-step energy barriers encountered by electrons from pollutants to catalysts, and subsequently to PMS, which promoted efficient degradation of pollutants. Furthermore, through the association of two-step energy barrier, the feasibility of utilizing the orbital interaction as a descriptor of the degradation rate by electron-mediated PMS activation was demonstrated. Additionally, the intermediates generated through electron transfer pathway exhibited a lower risk of bioaccumulation. This work inspires insights into the electron-mediated mechanism of multinary catalytic interface reactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call