Abstract

Electrocatalytic C-N bond coupling to convert CO2 and N2 molecules into urea under ambient conditions is a promising alternative to harsh industrial processes. However, the adsorption and activation of inert gas molecules and then the driving of the C-N coupling reaction is energetically challenging. Herein, novel Mott-Schottky Bi-BiVO4 heterostructures are described that realize a remarkable urea yield rate of 5.91 mmol h-1 g-1 and a Faradaic efficiency of 12.55 % at -0.4 V vs. RHE. Comprehensive analysis confirms the emerging space-charge region in the heterostructure interface not only facilitates the targeted adsorption and activation of CO2 and N2 molecules on the generated local nucleophilic and electrophilic regions, but also effectively suppresses CO poisoning and the formation of endothermic *NNH intermediates. This guarantees the desired exothermic coupling of *N=N* intermediates and generated CO to form the urea precursor, *NCON*.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.