Abstract

Implementing manganese-based electrode materials in lithium-ion batteries (LIBs) faces several challenges due to the low grade of manganese ore, which necessitates multiple purification and transformation steps before acquiring battery-grade electrode materials, increasing costs. At present, most Lithium Manganese Oxide (LMO) materials are synthesized using electrolytic manganese dioxide, and the development of new processes, such as hydrometallurgical processes is important for achieving a cost-effective synthesis of LMO materials. In this work, we develop a full synthesis process of LMO materials from manganese ore, through acid leaching, forming manganese sulfate monohydrate (MnSO4·H2O), an optimized thermal decomposition (at 900, 950 or 1000 °C) producing different Mn3O4 materials and a solid-state reaction, achieving the synthesis of LMO. The latter was used as a cathode material for LIB exhibiting a specific capacity comparable to the state-of-the-art LMO cathode with a remarkable cycling stability of 800 cycles with <20 % in capacity loss. These performances were attributed to the excellent redox reversibility of the LMO cathode, characterized by voltammetry and in operando and in situ characterization by Raman and XRD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.