Abstract

Using confocal Raman micro-spectroscopy, this study aims to elucidate the cellular responses of the γ-secretase inhibitor, N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), in osteosarcoma (OS) cells in a dose- and time-dependent manner. The K7M2 murine OS cell line was treated with different DAPT doses (0, 10, 20, and 40 μM) for 24 and 48 hours before investigations. Significant compositional changes (nucleic acids, protein and lipid) after DAPT treatment were addressed, which testified inhibitory effect of DAPT on the growth of OS cells. Moreover, both partial least squares-discriminant analysis (PLS-DA) and principal component analysis-linear discriminant analysis (PCA-LDA) analyses revealed governing composition variations among groups by distinguishing their spectral characteristics. Furthermore, by adopting leave-one-out cross validation method, it is shown that PLS-DA exhibited more classification capacity than PCA-LDA algorithm. Hence, by understanding the DAPT-based cellular variations, the achieved results provided an experimental foundation to establish new DAPT-based anticancer therapeutic strategies, and preclinical Raman analytical methodologies on drug-cell interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.