Abstract

The poor extractability and digestibility of jack beans restrict their application in food systems. Thermal treatment could be a processing tool to disrupt the compact conformation of the plant matrix and inactivate inherent antinutrients. Therefore, this research investigated the impact of conventional heat-aided (HA-) and microwave-aided (MA-) extraction treatments on the structure, functional properties, and digestibility of jack bean protein concentrate (JBPC) under varying extraction pH. The novelty brought by the present study is establishing the thermal treatment/extraction pH combinations for improving techno-functionalities and digestibility of JBPC. Heat (50 °C for 1 h) and sequential microwave power (400 W, 600 W, and 800 W for 5 min) at three extraction pH (9.0, 10.0, and 11.0) were studied. Upon increasing extraction pH, a significant decrease in the protein content, and β-Sheet structure was observed, in the order of pH 11.0 > 10.0 > 9.0. JBPC extracted using HA treatments displayed the highest contents of surface hydrophobicity (90.02) and sulfhydryl groups. In functional properties, MA-extracted JBPC under 400 W showed significantly improved solubility (93.45 %), emulsifying activity index (45.23 m2/g), and foaming capacity (141.70 %) when compared to other thermal treatments. The degree of hydrolysis result revealed that MA treatment improved the JBPC in vitro digestibility at a low power level of 400 W. These findings suggest that MA extraction treatment can improve the functional and nutritional properties of JBPC regardless of the extraction pH, and thus, expand the potential application in food systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.